Có \(ab+a+b=1\)
=> (1-a)(b-1) + 2ab = 0
=> 2(1-a)(b-1) + 4ab = 0 (1)
Có ab+a+b=1
=> (a+1)(b+1) = 2 (2)
Thay (2) vào (1) ta có \(\left(1-a^2\right)\left(b^2-1\right)+4ab=0\)
<=> \(a^2+b^2+4ab-a^2b^2-1=0\)
<=> \(2a^2+2b^2+4ab=a^2b^2+a^2+b^2+1\)
<=> \(2\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
+)ta có ab+a+b=1
<=>ab=1-a-b
+)(a2+1).(b2+1)=2(a+b)2
<=>a2b2+a2+b2+1-2(a2+2ab+b2)=0
<=>a2b2+a2+b2+1-2a2-4ab-2b2=00
<=>-3ab-a2-b2+1=0
<=>-ab-2ab-a2-b2+1=0
<=>-(a2+2ab+b2)+1-ab=0
<=>1-(a+b)2-ab=0
<=>(1-a-b)(1+a+b)-ab=0
Mà ab+a+b=1=>ab=1-a-b
<=>ab(1+a+b)-ab=0
<=>ab(1+a+b-1)=0
<=>ab(a+b)=0
Mà ab+a+b=1=>ab=1-a-b
=>(1-a-b)(a+b)=0
Tự giải pt sẽ ra !