\(a+b=6\)
<=> \(\left(a+b\right)^2=36\)
<=> \(a^2+2ab+b^2=36\)
<=> \(2ab=36-a^2-b^2=-1974\)
<=> \(ab=--987\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=6^3-3.\left(-987\right).6=17982\)
\(a^3+b^3=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=6\left(2010+2ab\right)\)
\(12060+6\left[\left(a+b\right)^2-a^2-b^2\right]\)
\(12060+6\left(36-2010\right)\)
\(=12060-11844\)
\(=216\)
sửa lại
\(2ab=\left(a+b\right)^2-a^2-b^2\)
\(2ab=36-2010\)
\(2ab=-1974\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(6\left(2010-ab\right)\)
\(12060-\left(-5922\right)\)
\(=17892\)