Cho các số nguyên dương a,b thỏa mãn \(a+b=a^2b^2\). Chứng minh rằng\(\sqrt{a+b+4\sqrt{a+b+2ab+1}}=ab+2\)
Cho a, b, c là các số thực dương thỏa mãn abc=a+b+c+2. Chứng minh rằng ab+bc+ca ≥ 2(a+b+c)
Cho a, b là 2 số thực dương. Chứng minh rằng ( 1 + a ) ( 1 + b ) ≥ 1 + a b
cho a,b,c là các số thực dương. chứng minh rằng a^2b/ab^2+1 + b^2c/bc^2+1 + c^2a/ca^2+1 >= 3abc/1+abc
Cho các số thực dương a,b. Chứng minh rằng\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt{\sqrt{ab}}\)
Giả sử a , b, c là các số thực dương thỏa mãn ab + bc + ca + abc nhỏ hơn hoặc bằng 4. Chứng minh rằng: \(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)^{ }\)
C6. Cho các số thực dương thoả mãn: ab+1 nhỏ hơn hoặc bằng b Chứng minh rằng : ( a + (1/a^2) ) + ( b^2 + (1/b) ) lớn hơn hoặc bằng 9
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)