#)Giải :
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)
\(\Leftrightarrow2ab=a^2+b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\left(đpcm\right)\)
Ta có:\
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)
Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy
Do \(a^2\ge0;b^2\ge0\)
suy ra áp dụng BĐT cauchy ta có
\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi a=b)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)