Ta có: \(a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\ge\left(\frac{1}{2}\right)^2\)
Và: \(a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\ge0\)
Và: \(2\left(a^4+b^4\right)\ge\frac{1}{4}\)
\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)
Ta có \(a+b=1\Leftrightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\left(1\right)\)
Lại có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)
Cộng từng vế (1) và (2) ta được : \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\Leftrightarrow a^4+2a^2b^2+b^4\ge\frac{1}{4}\left(3\right)\)
Mặt khác: \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)
Cộng từng vế (3) và (4) ta được
\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Leftrightarrow a^4+b^4\ge\frac{1}{8}\)
Bđt được chứng minh
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)