Cho a>0, b>0, \(a+b\le1\)
tìm giá trị nhỏ nhất của biểu thức S=\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)
Cho hai số thực a,b khác 0 thõa mãn \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S=ab+2019
Cho a, b là các số thực thỏa mãn \(a+\frac{1}{b}\le1\). Tìm giá trị lớn nhất của biểu thức \(T=\frac{ab}{a^2+b^2}\)
Cho a>0 ; b>0 và \(a+b\le4\)
tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
Tìm giá trị nhỏ nhất của biểu thức: \(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\)
Mình cần gấp, ai làm nhanh và đúng nhất được 3 ticks!
cho a,b,c>0 và a+b+c . tìm giá trị nhỏ nhất của biểu thức sau: 2(a+b+c) + (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))
cho các số thực a,b,c dương thỏa mãn: \(ab+bc+ca=1\) . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\frac{1}{a^2}+\frac{1}{ab}+\frac{4}{bc}+\frac{4}{c^2}\)
1. Cho \(a+b+c\le\frac{3}{2}\) . Tìm giá trị nhỏ nhất của \(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
2. Cho \(a+b\le1\) . Tìm giá trị nhỏ nhất của \(S=a+b+\frac{1}{a}+\frac{1}{b}\)
Cho biểu thức \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)( Với a>b>0 )
Rút gọn biểu thức P và tìm giá trị nhỏ nhất của biểu thức này khi b=a-1