\left\{\begin{matrix}
\\
\end{matrix}\right.
Lời giải:
Ta có:
\((a+\frac{1}{a})(b+\frac{1}{b})=ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}\)
Áp dụng BĐT AM-GM:
\(\frac{a}{b}+\frac{b}{a}\geq 2\)
\(ab+\frac{1}{16ab}\geq \frac{1}{2}\)
\(\frac{15}{16ab}\geq \frac{15}{4(a+b)^2}=\frac{15}{4}\)
Cộng theo vế các BĐT trên:
\((a+\frac{1}{a})(b+\frac{1}{b})\geq \frac{25}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$