a)Cho a,b thuộc Z thỏa ( a^2-ab+b^2) chia hết 2. C/m (a^3+b^3) chia hế cho 8
b)Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng2013
c)Tìm các số nguyên n để 2013/((4n)^2-4n+3) có giá trị nguyên
d)Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a +-1/b=1/ab. Tính giá trị M= (a^3-b^3+1)/(a^2+b^2-1)
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
BÀI 1: Cho a và b thuộc N( a.b khác 0)
X=(ab-1)^2 + (a+b)^2. CMR: X là hợp số
BÀI 2: Cho a và b thuộc Z:
X= a^5b - ab^5.CMR: X chia hết cho 30
bài 1:CHo x,y,z dương thỏa mãn : 0 <= x<= 4<=y<=z<=7 và x+y+z=15.Tìm GTLN của p=xyz
bài 2: Cho a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y thuộc z biết 5x^2 +2y^2 +10x + 4y =6
Cho a,b thuộc Z khác 0 Cmr
(a^2,b^2)=(a,b)
Cho a,b thuộc R khi a+b khác 0
CMR: a^2 + b^2+ (ab+1/a+b)^2 >= 2
cho biểu thức A=(2a/a+3-2/3-3a2+3/aa-9):a+1/a-3 (a khác -1;a khác +-3)
a) Rút gọn B
b) Tính B với trị tuyệt đối a =2
c) Tìm a thuộc Z để B thuộc Z