Ta chứng minh:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Khi đó:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\le16\)
\(\Rightarrow\left(a+b\right)^2\le16\Rightarrow-4\le a+b\le4\Rightarrowđpcm\)
Ta chứng minh:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Khi đó:\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\le16\)
\(\Rightarrow\left(a+b\right)^2\le16\Rightarrow-4\le a+b\le4\Rightarrowđpcm\)
Cho hai số thực a,b thỏa mãn a+b=2. Chứng minh rằng:
\(a^2+b^2\le a^4+b^4\)
Cho a,b,c \(\in\) [-2,5] thỏa mãn a+2b+3c \(\le\) 2.Chứng minh \(a^2\)+2\(b^2\)+3\(c^2\)\(\le\)66
Cho các số nguyên dương n,a,b,c,d thỏa mãn n2\(\le\)a<b\(\le\)c<d<(n+1)2. Chứng minh rằng |ad-bc|\(\ge\)1.
Cho 3 số thực dương a;b;c thỏa mãn \(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
Chứng minh rằng : \(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
Cho a+b+c=6 và ab+bc+ac=9. Chứng minh: \(0\le a\le4;0\le b\le4;0\le c\le4.\)
Cho a,b,c là các số thực thỏa mãn \(^{a^2+b^2+c^2=1}\). Chứng minh rằng : \(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le\frac{3}{4}\)
Cho 4 số a,b,x,y thỏa mãn : \(0< a\le x< y\le b\) Chứng minh : \(\left(x+y\right).\left(\frac{1}{x}+\frac{1}{y}\right)\) \(\le\) \(\frac{\left(a+b\right)^2}{ab}\)
cho các số thực a,b,c thỏa mãn : \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức S=2016ac-ab-bc
cho a,b,c thỏa mãn: a+b+c=3/2 chứng minh a^2+b^2+c^2>=3/4