cho a,b,c các số thực thỏa mãn 1<=a,b,c<=2
tìm gtnn của biểu thức
A = \(\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c-12ac+9a^2}\)
Cho a, b la các số thực dương thỏa mãn a+3b=ab. Tìm GTNN của biểu thức:
P=\(\frac{a^2}{1+3b}+\frac{9b^2}{1+a}\)
Cho ba số thực dương a,b,c thỏa mãn a+b+c=1. Tìm GTLN của biểu thức
P=\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Cho a; b; c là 3 số thỏa mãn điều kiện a^2+b^2+c^2+16=8a+4b. CMR: 10<= 4a+3b<=40
Cho a; b; c là 3 số thỏa mãn điều kiện a^2+b^2+c^2+16=8a+4b. CMR: 10<= 4a+3b<=40
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\)
Chứng minh \(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^3}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3\).Chứng minh rằng
\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)
cho a;b;c>0 thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3.\)CMR:
\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)
Cho 3 số thực dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)