Cho hàm số f ( x ) = x 3 - 3 x + m + 2 . Có bao nhiêu số nguyên dương m < 2018 sao cho với mọi bộ ba số thực a,b,c ∈ [-1;3] thì f(a),f(b),f(c) là độ dài ba cạnh một tam giác nhọn.
A. 2009.
B. 2013.
C. 2017.
D. 2008.
Cho hàm số f(x)= x3-3x+m+2 Có bao nhiêu số nguyên dương m < 2018 sao cho với mọi bộ ba số thực a , b , c ∈ - 1 ; 3 thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác nhọn
A. 2009
B. 2013
C. 2017
D. 2008
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ , a > 0 và d > 2018 a + b + c + d - 2018 < 0 . Số cực trị của hàm số y = f ( x ) - 2018 bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d , ( a , b , c , d ∈ ℝ ) thỏa mãn a > 0 , d > 0 > 2018 , a + b + c + d - 2018 < 0 Tìm số điểm cực trị của hàm số y = f ( x ) - 2018
A. 2
B. 1
C. 3
D. 5
Trong không gian Oxyz, cho 2 mặt phẳng (P): x + 2y – 2z +2018 = 0, (Q): x + my + (m – 1)z + 2017 = 0 (m là tham số thực). Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q) ?
A. M(–2017;1;1)
B. M(0;0;2017)
C. M(0;–2017;0)
D. M(2017;1;1)
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1
Cho a, b là các số thực và hàm số f x = x − a − 1 x 2 − 4 k h i x ≠ 2 2 x − b k h i x = 2 liên tục tại x = 2. Tính giá trị của biểu thức T=a+b.
A. T = 31 8
B. T = 5
C. T = 3
D. T = 39 8
Cho a, b là các số thực và hàm số f x = x − a − 1 x 2 − 4 2 x − b k h i x ≠ 2 k h i x = 2 liên tục tại x = 2. Tính giá trị của biểu thức T = a+b.
A. T = 31 8 .
B. T = 5
C. T = 3
D. T = 39 8 .
Diện tích hình phẳng giới hạn bởi các đường x=-1; x=2; y=0 và parabol P : y = a x 2 + b x + c bằng 15. Biết (P) có đỉnh I(1;2) là điểm cực tiểu. Tính T=a+b-c
A. T = -8.
B. T = -2.
C. T = 14.
D. T = 3.