a+2001/b+2001=\(\frac{a\left(a.2001\right)}{b\left(b.2001\right)}\)=\(\frac{a^2.2001}{b^2.2001}\)=\(\frac{a^2}{b^2}\)
Nếu a<b thì a/b<a2/b2
Nếu a>b thì a/b>a2/b2
a+2001/b+2001=\(\frac{a\left(a.2001\right)}{b\left(b.2001\right)}\)=\(\frac{a^2.2001}{b^2.2001}\)=\(\frac{a^2}{b^2}\)
Nếu a<b thì a/b<a2/b2
Nếu a>b thì a/b>a2/b2
Cho \(a,b\in Z,b>0\). So sánh hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)
Cho a,b thuộc Z, b > 0. so sánh hai số hữu tỉ \(\frac{a}{b}\)và\(\frac{a+2001}{b+2001}\)
cho a,b thuộc Z, b >0. So sánh hai số hữu tỉ \(\frac{a}{b}\) và\(\frac{a+2001}{b+2001}\)
cho a,b thuộc Z, b>0 .So sánh hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+2001}{b+2001}\)
cho a,b thuộc Z,b>0.So sánh hai số hữu tỉ \(\frac{a}{b}\)và\(\frac{a+2001}{b+2001}\)
\(Cho\)\(a,b\in Z,b>0.\)\(So\)\(sánh\)HAI SỐ HỮU TỈ \(\frac{a}{b}\)VÀ \(\frac{a+2001}{b+2001}\)
Cho a,b \(\in\) Z, B > 0. So sánh hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)
cho a,b \(\in\)Z;b > 0. So sánh hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)
Cho a, b \(\in\) Z, b > 0. So sánh hai hữu số tỷ \(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)