CMR:\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d\right)\forall a,b,c,d,e\varepsilon R\)
CMR
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)với a,b,c,d,e \(\varepsilon\)R
Bài 1:Cho a,b,c là các số dương tùy ý. Chứng minh rằng: \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Bài 2: Cho a,b,c là các số dương. Chứng minh các bđt:
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\)
b) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\left(d>0\right)\)
Chứng minh rằng:
a, \(a^2+b^2+c^2+3\ge2\left(a+b+c\right);\forall a,b,c\)
b,\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right);\forall a,b,c,d\)
c, \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right);\forall a,b,c,d,e\)
d, \(a^2+b^2+c^2+d^2+ab+cd\ge6;\forall a,b,c,d>0\)và \(abcd=1\)
Cho a, b, c, d, e là các số thực CMR \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
cho a,b,c,d,e là các số thực .CMR:\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Cho a,b,c,d,e là các số thực. CM:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
So i dì:))
Chứng minh rằng với a,b,c,d,e là các số thực ta có \(a^2+b^2+c^2+d^2+e^2\ge ab+ab+ac+ad+ae\)
Chứng minh: a2 + b2 + c2 + d2 + e2 lớn hơn hoặc bằng a(b+c+d+e) với mọi a,b,c,d,e thuộc R