a) Gọi d là ước nguyên tố của A .Ta có:
2n+7-2*(2n-2) chia hết cho d
suy ra:2n+7-(2n-2) chia hết cho d
suy ra:2n+7-2n+2 chia hế cho d
suy ra:9 chia hết cho d.Mà d là số nguyên tố nên d =3
-Ta thấy :2n+7 chia hết cho 3 ,khi đó n-2 chia hết cho 3
khi và chỉ khi:2n+-3 chia hết cho 3
khi và chỉ khi:2n+(7-3) chia hết cho 3
khi và chỉ khi:2n +4 chia hết cho 3
khi và chỉ khi: 2*(n+2) chia hết cho 3
khi và chỉ khi : n+2 chia hết cho 3
khi và chỉ khi : n=3k -2 (với k thuộc N)
Vậy với n khác 3k-2 thì A (=2n+7/n-2) là phân số
b) với n thuộc Z để A=2n+7/n-2 thuộc Z ta có:
2n+7 chia hết cho n-2
suy ra: 2n+7-(n-2) chia hết cho n-2
suy ra: 2n+7-n+2 chia hết cho n-2
suy ra: (2n-n) + (7+2) chia hết cho n-2
suy ra: n +9 chia hết cho n-2
suy ra: (n-2) +11 chia hết cho n-2
suy ra; 11 chia hết cho n-2 [do (n-2) chia hết cho (n-2)]
suy ra: n-2 thuộc ước của 11 ={ -1;1;-11;11}
Ta có bảng sau:
n-2 | - |
n-2 | -1 1 -11 11 |
n | 1 3 -9 13 |