\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\Leftrightarrow2\left(a^2+b^2+c^2-ab-b-ac\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Dấu ' = ' xảy ra khi a=b=c (dpcm)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\Leftrightarrow2\left(a^2+b^2+c^2-ab-b-ac\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Dấu ' = ' xảy ra khi a=b=c (dpcm)
Cho a^2+b^2+c^2=ab+bc+ca. Chứng minh rằng a=b=c.
a, Cho a2 +b2+c2+3=2(a+b+c).chứng minh rằng a=b=c=1
b,Cho (a+b+c)2=3(ab+ac+bc).Chứng minh a=b=c
cho a^2+b^2+c^2=ab+bc+ac
chứng minh rằng: a=b=c
cho (a+b+c)2=3(ab+bc+ac). chứng minh rằng a=b=c
Gấp!!
Cho (a-b)^2+(b-c)^2+(c-a)^2+4(ab+ac+bc)=4(a^2+b^2+c^2). Chứng minh rằng: a=b=c
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0
Cho\(a+b+c=0\) chứng minh rằng
\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)