Ta có:
A=2+22+23+...+2120
A=(2+22+23+24+25)+...+(2116+2117+2118+2119+2120)
A=2.(1+2+22+23+24)+...+2116.(1+2+22+23+24)
A=2.63+...+2116.63
A=63.(2+...+2116)
A=21.3.(2+...+2116)\(⋮\)21
Vậy A chia hết cho 21
\(A=2^1+2^2+2^3+2^4+....+2^{119}+2^{120}\)
\(=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.....+2^{115}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+....+2^{115}.63\)
\(=63\left(2+....+2^{115}\right)\)
\(=3.21.\left(2+...+2^{115}\right)\)
\(\Rightarrow A⋮21\)