Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Ánh

cho A=2 + 2^2+2^3+2^4+ ...+2^99+2^100

Chứng minh rằng A chia hết cho 31

giúp mk vs

Đỗ Đức Đạt
20 tháng 10 2017 lúc 19:00

\(A=2+2^2+2^3+2^4+.......+2^{99}+2^{100}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+.......+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow1.\left(2+2^2+2^3+2^4+2^5\right)+.......+1.\left(2+2^2+2^3+2^4+2^5\right)\)

\(\Rightarrow1.62+......+1.62\)

Mà 62 \(⋮\)31 => A \(⋮\)31


Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
Hoshiko Terumi
Xem chi tiết
Nguyễn Vũ Quỳnh Chi
Xem chi tiết
Cure Honey
Xem chi tiết
Minh Đăng
Xem chi tiết
Lan Anh (Min)
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
Yễn Nguyễn
Xem chi tiết