Lời giải:
$A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{500}}$
$5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{499}}$
$\Rightarrow 5A-A=1-\frac{1}{5^{500}}< 1$
Hay $4A< 1$
$\Rightarrow A< \frac{1}{4}$ (đpcm)
Lời giải:
$A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{500}}$
$5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{499}}$
$\Rightarrow 5A-A=1-\frac{1}{5^{500}}< 1$
Hay $4A< 1$
$\Rightarrow A< \frac{1}{4}$ (đpcm)
cho a=1+5+5^2+5^3+5^4+...+5^19 chứng minh rằng 4a+1 là hợp số
a) thu gọn biểu thức sau: a= 5 - 5^2 + 5^3 - 5^4 +...- 5^98 + %^99
b) chứng minh rằng với mọi n thuộc N thì (2^n+1).(2^n+2) đều chia hết cho 3
c) chúng minh: A= 1/1^2 + 1/2^2+ 1/3^2+.....+1/99^2+ 1/100^2 < 1 3/4 (hỗn số)
cho A= 1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+....1/49-1/50. Chứng minh A<5/6
Cho A=1/1×2+1/3×4+1/5×6+.............+1/99×100
Chứng minh 7/12 < A <5/6
chứng minh A=B :
B= 1.2:(1/1/5*1/1/4) trên 0.32+2/25
A=(3 /2/15 + 1/5 ) : 2/1/2 tren (5/3/7 - 2/1/4):4/43/56
Cho biểu thức A = 1/ 1×2 + 1/ 3×4 + 1/ 5×6 + ......... + 1/ 99×100. Chứng minh rằng: 7/12 < A < 5/6
cho A=1/1*2+1/3*4+1/5*6+...+1/99*100
chứng minh rằng 7/12<A<5/6
cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
chứng minh rằng 7/12<A<5/6
1, Thực hiện phép tính bằng cách hợp lý:
A=(1)/(2)-(2)/(5)+(1)/(3)+(5)/(7)-(-1)/(6)+(-4)/(35)+(1)/(41)
2, Chứng minh rằng:
a, 1+4+4^2+4^3+...+4^99 chia hết cho 5
b, 3^n+2-2^n+2+3^n-2^n chia hết cho 10 (với n thuộc N*)