Cho các số tự nhiên a và b thỏa mãn 2016b+a chia hết cho 2017 .CMR A = (2015b+2a)(2014b+3a)...(2015a+2b) chia hết cho 2017^2014
cho a,b thuộc Z và 3a cộng 4b chia hết cho 7 CMR
A)a+6b chia hết cho 7
B)(a+6b)(2a+5b)(3a+4b)(4a+3b)(5a+2b)(6a+b) chia hết cho 7^6
làm ơn hãy cứu mình :(
cho a,b thuộc Z và 3a cộng 4b chia hết cho 7 CMR
A)a+6b chia hết cho 7
B)(a+6b)(2a+5b)(3a+4b)(4a+3b)(5a+2b)(6a+b) chia hết cho 7^6
làm ơn hãy cứu mình :(
cho a,b thuộc Z và 3a cộng 4b chia hết cho 7 CMR
A)a+6b chia hết cho 7
B)(a+6b)(2a+5b)(3a+4b)(4a+3b)(5a+2b)(6a+b) chia hết chho 7^6
làm ơn hãy cứu mình :(
cho a,b thuộc Z và 3a cộng 4b chia hết cho 7 CMR
A)a+6b chia hết cho 7
B)(a+6b)(2a+5b)(3a+4b)(4a+3b)(5a+2b)(6a+b)
làm ơn hãy giúp mình :(
Câu a: Tìm n thuộc Z để A=(2n+1/n+3)-n-5/n+3
Nhận giá trị nguyên
Câu b: Cho a+2b/b=b+2c/c=c+2a/a với a,b,c khác 0
Tính M=(1+a/b)(1+b/c)(1+c/a)
Câu c: a,b,c thuộc Z+ thỏa mãn :a/a+2b =b/b+2c=c/c+2a
CMR :a+b+c chia hết cho 3
Câu d: Cho xt=yz
CMR : (x-y/z-t)^2017=x^2017+y^2017/z^2017+t^2017
Ai giải dùm mình với T^T
CMR biểu thức A=75.(4^2017+4^2016+..+4^2+5)+25 chia hết cho 4^2018
cmr nếu 3a+2b chia hết cho 17 thi 10a +b chia hết cho 17(a,b nguyên)
a)chứng tỏ rằng M=75*(4^2017+4^2016+...+4^2+4+1)chia hết cho 10^2
b)cho tích a*b là số chính phương và (a,b)=1 cmr a và b đều là số chính phương
Cho a,b,c là các số tự nhiên đôi một có số dư khác nhau trong phép chia cho 5. CMR ba số M=3a+b+c; N=3b+a+c; P=2a+2b+c luôn có đúng một số chia hết cho 5.