\(A=\sqrt{x-3}+\sqrt{y-4}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)
\(A=\sqrt{x-3}+\sqrt{y-4}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
cho 2 số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\) . tìm giá trị lớn nhất , giá trị nhỏ nhất của A =x+y
Tìm giá trị lớn nhất của A= \(\dfrac{\sqrt{z-1}}{z}+\dfrac{\sqrt{x-2}}{x}+\dfrac{\sqrt{y-3}}{y}\)
tìm giá trị lớn nhất \(\sqrt{x-3}+\sqrt{y-4}\)biết x+y=8
Cho x>0, y>0 và x+y = 1
Tìm giá trị lớn nhất của A = \(\sqrt{x}+\sqrt{y}\)
1)cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=8\)
Chứng minh rằng : \(\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{4}=\sqrt[3]{am^2+bn^2+cp^2}\)
2)Tìm giá trị lớn nhất của biểu thức \(B=\frac{x}{2}+\sqrt{1-x-2x^2}\)
b) cho x ,y là số thực thỏa mãn \(y^2=1-4x^2\).Tìm giá trị lớn nhất và nhỏ nhất
của \(A=\frac{2x+3y}{2x+y+2}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Cho x; y thỏa mãn \(2\sqrt{x}+3\sqrt{y}=7\)Tìm giá trị lớn nhất và nhỏ nhất của P= x+10y
BT1: Tìm Giá trị lớn nhất
A= \(\sqrt{x-1}+\sqrt{y-2}\) biết x+y = 4
B= \(\sqrt{x-4}+\sqrt{y-3}\) biết x+y=15
C= \(\frac{\sqrt{x-9}}{5x}\)
BT2: Tìm Giá trị nhỏ nhất
A= \(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)