\(a^2+b^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}=8\)
\(ab=\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(\Rightarrow\left(a+b\right)^2=a^2+b^2+2ab=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow a+b=\sqrt{5}+1\) (do \(a;b>0\Rightarrow a+b>0\))