a+1/a là số nguyên.
=>a+1 chia hết cho a
=>1 chia hết cho a
=>a=Ư(1)=(-1,1)
Xét a=1=>an+1=1+1=2 chia hết cho 1=1n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Xét a=-1.
Với n chẵn=>an+1=1+1=2 chia hết cho 1=1n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Với n lẻ=>an+1=-1+1=0 chia hết cho -1=(-1)n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Vậy an+1/a là số nguyên.
Bạn Lê Chí Cường giải không đúng, do hiểu nhầm \(a+\frac{1}{a}\). là \(\frac{a+1}{a}\).
Bài này giải như sau: Ta tiến hành chứng minh bằng quy nạp rằng \(a^n+\frac{1}{a^n}\) là số nguyên dương với mọi \(n\) nguyên dương.
Thực vậy, theo giả thiết \(a+\frac{1}{a}\in Z\) nên khẳng định đúng khi \(n=1.\)
Với \(n=2,\) thì ta có \(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2\in Z.\)
Giả sử rằng \(a^k+\frac{1}{a^k}\) là số nguyên dương với mọi \(k\) nguyên dương với mọi \(k=1,\ldots,n\). Ta cần chứng minh \(a^{n+1}+\frac{1}{a^{n+1}}\) cũng là số nguyên. Thực vậy, ta có \(\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)=\left(a^{n+1}+\frac{1}{a^{n+1}}\right)+\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\)
\(\to a^{n+1}+\frac{1}{a^{n+1}}=\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)-\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\).
Theo giả thiết quy nạp \(\left(a+\frac{1}{a}\right),\left(a^n+\frac{1}{a^n}\right),\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\) là các số nguyên nên \(a^{n+1}+\frac{1}{a^{n+1}}\) cũng là số nguyên.
Vậy khẳng định đúng với \(n+1.\). Theo nguyên lí quy nạp khẳng định đúng với mọi số nguyên dương \(n.\)