Ta co: a+b+c=0
=>a+b=-c
=>c2=a2+b2+2ab
=>a2+b2-c2=-2ab
=>\(\frac{1}{a^2+b^2-c^2}=\frac{1}{-2ab}\)
Tuong tu ....
=> \(\frac{1}{a^2+b^2+c^2}+...\)=\(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}\)
=\(\frac{a+b+c}{-2abc}\)
=0(ĐPCM)
Ta co: a+b+c=0
=>a+b=-c
=>c2=a2+b2+2ab
=>a2+b2-c2=-2ab
=>\(\frac{1}{a^2+b^2-c^2}=\frac{1}{-2ab}\)
Tuong tu ....
=> \(\frac{1}{a^2+b^2+c^2}+...\)=\(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}\)
=\(\frac{a+b+c}{-2abc}\)
=0(ĐPCM)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) với \(a,b,c\ne0\). Chứng minh rằng \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
cho \(a,b,c\ne0\) thảo mãn a+b+c=0 CMR
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)\(\left(a,b,c\ne0\right)\)
Chứng minh rằng: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Bài 1.Cho \(x+y+z=0\)
Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(xy+yz+zx=0\)
Bài 3. Cho \(3x-y=2z\)
\(2x+y=7z\)
Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)
Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)
Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)
Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
1) Cho \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)
CM \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
2) Cho \(\frac{1}{a}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a-b}\)và \(ac\ne0\); \(a\ne b\); \(b\ne c\)
CM \(\frac{a}{c}=\frac{a-c}{b-c}\)
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1
Cho : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\left(a,b,c,x,y,z\ne0\right)\)
CMR : \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Chứng minh bđt: \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)