cho a,b dương và a^2010+b^2010=a^2011+b^2011=a^2012+b^2012 Tính S=a^2013+b^2014
cho a,b khác 0 thỏa mãn a^2014 + b^2014 = a^2013 + b^2013 = a^2012 + b^2012
chứng minh rằng : a^2014 + b^2014 = a^2010 + b^2010
Giải hộ mình với
1.n^2(n^2-1) chia hết cho12
2.Cho 3 số a,b,c thoả mãn abc=1 và a+b+c=1/a+1/b+1/c
tính giá trị của M=(a^2011-1)(b^2012-1)(c^2013-1)
cho a^2+b^2+c^2= a^3+b^3+c^3=1. tính S= a^2+b^2012+c^2013
cho a^2+b^2+c^2=a^3+b^3+c^3==1 tính S=a^2+b^2012+c^2013
Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính S=\(\text{a}^{\text{2}}\)\(+b^{2012}\)\(+c^{2013}\)
Cho a^2+b^2+c^2=a^3+b^3+c^3=1
Tính a^2+b^2012+c^2013
Các số a,b,c thõa mãn điều kiện: a^5 + b^5 + c^5 = a^2 + b^2 + c^2 =1. Tính giá trị biểu thức: S = a^2012+ b^2013+ c^2014
So sánh phân thức A=\(\frac{2013^2-2012^2}{2013^2+2012^2}\) với B=\(\frac{2013-2012}{2013+2012}\)