cho a,b>0 và 2a +3b \(\le\)4 . Tìm gtnn của P=\(\frac{2002}{a}\)+\(\frac{2007}{b}\)+ 2996a - 5501b
cho 2 số thực dương a,b tm \(2a+3b\le4\)
tìm \(Qmin=\frac{2002}{a}+\frac{2017}{b}-2996a-5501b\)
Cho hai số thực dương a, b thoả mãn 2 a + 3 b ≤ 4 . Tìm giá trị nhỏ nhất của biểu thức Q = 2002 a + 2017 b + 2996 a − 5501 b
Cho a, b > 0 thỏa mãn: a + b = 4
Tìm GTNN của: B = 2a + 3b+ \(\frac{6}{a}\)+ \(\frac{10}{b}\)
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
Cho a,b là các số nguyên dương thỏa điều kiện a(2a+1)=b(3b+1). Đặt M=2a+2b+1, chứng minh M là số chính phương
cho a,b,c dương, a nhỏ hơn hoặc bằng 3, b nhỏ hơn hoặc bằng 4. tìm GTLN của\(A=\left(3-a\right)\left(4-b\right)\left(2a+3b\right)\)
Cho a,b thuộc N thỏa mãn điều kiện 2a2+a=3b2+b
Chứng minh rằng a-b và 2a+2b+1 đều là số chính phương