Áp dụng BĐT: \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(VT=\sqrt{3\left(a^2+6\right)}=\sqrt{3\left(a^2+a^2+b^2\right)}=\sqrt{3\left(2a^2+\frac{b^2}{2}+\frac{b^2}{2}\right)}\)
\(VT=\sqrt{3\left[\left(a\sqrt{2}\right)^2+\left(\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}\right)^2\right]}\ge a\sqrt{2}+\frac{b}{\sqrt{2}}+\frac{b}{\sqrt{2}}=\sqrt{2}\left(a+b\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\sqrt{\frac{6}{5}}\\b=\sqrt{\frac{24}{5}}\end{matrix}\right.\)