A=\(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\)(\(A\ge0\))
<=> \(A^2=\left(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\right)^2\)
Áp dụng bđt bunhiacopski có:
\(\left(1.\sqrt{5a+1}+1.\sqrt{5b+1}+1.\sqrt{5c+1}\right)^2\le\left(1+1+1\right)\left(5a+1+5b+1+5c+1\right)\)
<=> \(A^2\le3\left(5a+5b+5c+3\right)=3.\left[5\left(a+b+c\right)+3\right]=3\left(5.1+3\right)=24\)(do a+b+c=1)
<=> \(A\le2\sqrt{6}\)
Dấu"=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Vậy \(A\le2\sqrt{6}\)