Gọi A,B là hai điểm thuộc hai nhánh khác nhau trên đồ thị (C) của hàm số , độ dài ngắn nhất của đoạn thẳng AB là
A.4 3 B.2 3 C. 2 3 D.4
B.2 3
C. 2 3
D.4
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Đồ thị (C) của hàm số y = x + 1 x - 1 và đường thẳng d: y=2x - 1 cắt nhau tại hai điểm A và B khi đó độ dài đoạn AB bằng?
A. .
B. .
C. .
D. .
Cho hàm số y = x - 1 x + 2 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận của (C) . Xét tam giác đều ABI có hai đỉnh A; B thuộc (C) , đoạn thẳng AB có độ dài bằng
A. 6 .
B. 2 3 .
C. 2.
D. 2 2 .
Có hai điểm A, B phân biệt thuộc đồ thị hàm số (C): y = x + 2 x - 1 sao cho A và B đối xứng với nhau qua điểm M(3;3). Tính độ dài đoạn thẳng AB.
A.
B.
C.
D.
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 Biết rằng chỉ có đúng hai điểm thuộc đồ thị (C) cách đều hai trục tọa độ. Gọi các điểm đó lần lượt là M và N. Tính độ dài đoạn thẳng MN.
A.
B. MN = 3
C.
D.
Biết hai điểm B(a; b), C(c; d) thuộc hai nhánh của đồ thị hàm số y = 2 x x - 1 sao cho tam giác ABC vuông cân tại đỉnh A(2; 0), khi đó giá trị biểu thức T=ab+cd bằng:
A. 6
B. 0
C. -9
D. 8
Biết hai điểm B(a; b), C(c; d) thuộc hai nhánh của đồ thị hàm số y = 2 x x - 1 sao cho tam giác ABC vuông cân tại đỉnh A(2; 0), khi đó giá trị biểu thức T=ab + cd bằng:
A. 6
B. 0
C. -9
D. 8
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 Biết rằng, chỉ có hai điểm thuộc đồ thị (C) cách đều hai điểm A(2;0) và B(0;-2). Gọi các điểm đó lần lượt là M và N. Tìm tọa độ trung điểm I của đoạn thẳng MN.
A. I(-1;1)
B.I(0;-3/2)
C.I(0;3/2)
D. I(-2;2)