nếu đề cho a;b >=1
\(\Rightarrow\hept{\begin{cases}a\ge\sqrt{a}\\b\ge\sqrt{b}\end{cases}\Leftrightarrow a+b\ge\sqrt{a}+\sqrt{b}}\)
mà \(a^2+b^2\ge2ab>\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\le\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow a\sqrt{b}+b\sqrt{a}\le\left(a+b\right)\left(a^2+b^2\right)\)
đấy nếu cho a;b >= 1 nó vẫn đúng về các yếu tố nhưng hướng làm thiếu tự nhiên và dấu bằng kiểu không hiện ra tại điểm giới hạn là 1 ý
nhìn thì có vẻ bunhi nhưng lại ko phải
bạn thiếu đk rồi bạn ơi, bạn bấm thử máy tính cho a= 0,000001 và b=0,0000001 đi, nó ra kết quả ngược lại với đpcm
đề phải thêm a,b>=1 nha bạn, xem lại đi đúng ko