\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\frac{x}{y}+\frac{1}{\frac{x}{y}}\)
\(x\ge2y\Rightarrow\frac{x}{y}\ge2\)
\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)
GTNN của M là \(\frac{5}{2}\)khi \(a=2y\)
\(\frac{x}{y}>=2\)=>\(\frac{y}{x}=< \frac{1}{2}\)
\(M=\frac{x}{y}+\frac{y}{x}=\frac{x}{y}+\frac{4y}{x}-\frac{3y}{x}\)
ta có \(\frac{x}{y}+\frac{4y}{x}>=4\)(cô si)(1)
\(-\frac{3y}{x}>=-\frac{3}{2}\)(2)
cộng 1 với 2=>M>=5/2
xảy ra dâu = khi x/y=2
Đinh Khắc Duy : ngược dấu nha: x/y >= 2 suy ra \(\frac{1}{\frac{x}{y}}\le\frac{1}{2}\) nhá,và như thế ko c/m đc vì có 2 dấu