Xét hiệu :
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)
\(=\frac{b+a}{ab}-\frac{4}{a+b}\)
\(=\frac{a+b}{ab}-\frac{4}{a+b}\)
\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)
\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)
Có \(\left(a-b\right)^2\ge0\)
Mà a , b dương \(\Rightarrow\)\(ab\left(a+b\right)\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
Hay \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
\(\frac{1}{a}\)+ \(\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\)\(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)
\(\Rightarrow\)b( a + b ) + a( a + b ) \(\ge\)4ab
\(\Leftrightarrow\)ab + b2 + a2 + ab - 4ab \(\ge\)0
\(\Leftrightarrow\)a2 - 2ab + b2 \(\ge\) 0
\(\Leftrightarrow\)( a - b )2 \(\ge\)0 ( luôn đúng với \(\forall\)a , b)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Bạn tham khảo bài làm của mình tại đây: Câu hỏi của Phạm Thị Thắm Phạm - Toán lớp 8