Cho \(a,b,c,d\in[0;1]\)
CMR: \(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)
cho a,b,c,d \(\in\left[0;1\right]\)cmr
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)
Cho \(a,b,c\in\left(0;1\right)\)thỏa mãn \(ab+bc+ca+a+b+c=1+abc\).CMR
\(\frac{1+a}{1+a^2}+\frac{1+b}{1+b^2}+\frac{1+c}{1+c^2}\le\frac{3}{4}\left(3+\sqrt{3}\right)\)
KO LÀM THÌ LƯỚT KO AI BẮT SPAM BẬY ĐÂU
Cho a+b+c=1 (a,b,c>0). CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Cho các số thực dương a,b,c thỏa mãn ab + bc+ ca= abc. CMR
\(\left(a+b+c\right)\left(\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}\right)\le\frac{9}{4}\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho a,b,c >0 thõa a+b+c=1
cmr \(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\)\(\frac{1}{2}\)
cho a,b,c >0
cmr \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
cmr \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)