Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:59a)Tìm giá trị của biểu thức A=xnxn + 1xn1xn biết x2 +x+1=0
b) Rút gọn biểu thức: N=x|x−2|x2+8x−20+12x−3x|x−2|x2+8x−20+12x−3
c)Tìm x,y biết: x2+y2+1x2+1y2=4x2+y2+1x2+1y2=4
d)Trong 3 số x,y,z có 1 số dương,1 số âm và 1 số 0. Hỏi mỗi số đó thuộc loại nào biết: |x|=y3−y2zy3−y2z
e)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1 , c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
g)Tìm số nguyên dương a,b,c thỏa mãn: a3+3a2+5=5ba3+3a2+5=5b và a+3=5^{c}
Tìm các số a,b,c thỏa mãn \(a^3+3a^2+5=5b^2\)và a+3=5c
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
cho các số a,b,c thỏa mãn 2a=3b,5b=7c và 3a-7b=5c=-30
khi đó a+b+c=..................................
1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)
cho a,b,c,d thỏa mãn:2a+5b/3a-4b=2c+5b/3c-4d
Cho a,b,c là ba số thực bất kì thỏa mãn a+b+c=0
Chứng minh rằng a3 + b3 + c3 = 0
Cho a,b,c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=...\) Chỉ mình cách làm luôn nhé