\(\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\) BĐT Cô-si
Tương tự suy ra đpcm
\(\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\) BĐT Cô-si
Tương tự suy ra đpcm
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Bài 1 :
Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Bài 2 :
Cho a, b, c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(Q=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Bài 3 :
Chứng minh rằng với mọi a, b, c khác 0 ta luôn có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a,b,c > 0 ; a+b+c=3 Chứng minh rằng :
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b, c >0. Chứng minh rằng:\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}.\left(a+b+c\right)\)
Bài 1: Chứng minh rằng: \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Bài 2: Cho a,b,c > 0. Chứng minh \(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho a,b,c >0 thỏa mãn a+b+c\(\le\)\(\frac{3}{2}\).Chứng minh
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)6
b,a+ b+ c+ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(\ge\)\(\frac{15}{2}\)
Cho a, b, c là các số dương và a+b+c=1 chứng minh rằng: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho a,b,c>0, a+b+c=3. Chứng minh: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)