Giả sử đpcm là đúng , khi đó , ta có :
\(\left|\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)< 1\right|\)
\(\Leftrightarrow\left|\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}\right|< 1\)
\(\Leftrightarrow\left|\frac{\left(a-c\right)ac+\left(b-a\right)ab+\left(c-b\right)bc}{abc}\right|< 1\)
Lại có : \(\left(a-c\right)ac+\left(b-a\right)ab+\left(c-b\right)bc\)
\(=\left(a-c\right)ac-\left(a-c+c-b\right)ab+\left(c-b\right)bc\)
\(=\left(a-c\right)\left(ac-ab\right)-\left(c-b\right)\left(ab-bc\right)\)
\(=a\left(a-c\right)\left(c-b\right)-b\left(c-b\right)\left(a-c\right)\)
\(=\left(a-c\right)\left(c-b\right)\left(a-b\right)\)
\(\Rightarrow\left|\frac{\left(a-c\right)\left(c-b\right)\left(a-b\right)}{abc}\right|< 1\) ( 1 )
Mặt khác : a ; b ; c là 3 cạnh tam giác
=> \(\frac{\left|a-c\right|}{b}< 1;\frac{\left|b-a\right|}{c}< 1;\frac{\left|c-b\right|}{a}< 1\)
\(\Rightarrow\frac{\left|\left(a-c\right)\left(b-a\right)\left(c-b\right)\right|}{abc}< 1\) ( 2 )
Biểu thức trong giá trị tuyệt đối của ( 1 ) ; ( 2 ) đối nhau
=> từ ( 2 ) => (1)
=> Điều giả sử là đúng
=> ĐPCM