Xét 2 TH sau:
TH1: a+b+c=0
Khi đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)
TH2: a+b+c khác 0
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Suy ra: a+b=2c; b+c=2a; c+a=2b
Do đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)
Xét 2 TH sau:
TH1: a+b+c=0
Khi đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)
TH2: a+b+c khác 0
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Suy ra: a+b=2c; b+c=2a; c+a=2b
Do đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)
Bổ sung cho bạn Lương Thị Quỳnh Trang
Đặt \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=k\left(k\in R\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=ck\\b+c=ak\\c+a=bk\end{matrix}\right.\)
Cộng 3 đẳng thức trên, ta có:
2(a + b + c) = (a + b + c)k
<=> (a + b + c)(k - 2) = 0
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\k=2\end{matrix}\right.\)
Với a + b + c = 0 thì giải như bạn ở dưới
Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{matrix}\right.\)
=> 3a = 3b = 3c (= a + b + c) <=> a = b = c
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=2.2.2=8\)
Vậy M = 8