Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Tìm GTNN của biểu thức: \(B=\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}+\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\) với a, b, c, d là các số dương và abcd=1

Nguyễn Việt Lâm
28 tháng 2 2021 lúc 16:39

\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)

\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)

\(B_{min}=1\) khi \(a=b=c=d=1\)

gãi hộ cái đít
28 tháng 2 2021 lúc 16:41

Áp dụng BĐT phụ ta có:

\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)

Vậy GTNN của B bằng 1 <=> a=b=c=d=1


Các câu hỏi tương tự
Gallavich
Xem chi tiết
Big City Boy
Xem chi tiết
Kamato Heiji
Xem chi tiết
Big City Boy
Xem chi tiết
Trung Nguyen
Xem chi tiết
Big City Boy
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết