Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Vũ Anh Thư

Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, biết rằng: \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

CMR: Tam giác ABC là tam giác đều.

Nguyễn Thanh Hằng
6 tháng 11 2018 lúc 11:32

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}.\dfrac{b+c}{b}.\dfrac{c+a}{c}=8\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

Với mọi \(a,b,c>0\) ta có :

+) \(\left(a+b\right)^2\ge4ab\) Dấu bằng xảy ra \(\Leftrightarrow a=b\)

+) \(\left(b+c\right)^2\ge4bc\) Dấu bằng xảy ra \(\Leftrightarrow b=c\)

+) \(\left(c+a\right)^2\ge4ca\) Dấu bằng xảy ra \(\Leftrightarrow c=a\)

\(\Leftrightarrow\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\Leftrightarrow\Delta ABC\) đều \(\left(đpcm\right)\)


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Big City Boy
Xem chi tiết
Gallavich
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Bách Bách
Xem chi tiết
Nam Phạm An
Xem chi tiết
Kamato Heiji
Xem chi tiết