\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\dfrac{a+b}{a}.\dfrac{b+c}{b}.\dfrac{c+a}{c}=8\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
Với mọi \(a,b,c>0\) ta có :
+) \(\left(a+b\right)^2\ge4ab\) Dấu bằng xảy ra \(\Leftrightarrow a=b\)
+) \(\left(b+c\right)^2\ge4bc\) Dấu bằng xảy ra \(\Leftrightarrow b=c\)
+) \(\left(c+a\right)^2\ge4ca\) Dấu bằng xảy ra \(\Leftrightarrow c=a\)
\(\Leftrightarrow\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\Leftrightarrow\Delta ABC\) đều \(\left(đpcm\right)\)