Từ giả thiết ta suy ra
(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0
⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0
⇔a+b+c≥16
Dấu "=" xảy ra khi a=4,b=5,c=6
Từ giả thiết ta suy ra
(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0
⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0
⇔a+b+c≥16
Dấu "=" xảy ra khi a=4,b=5,c=6
1) Với x, y, z là các số thực thỏa mãn xy + yz + zx = 13, chứng minh rằng \(21x^2+21y^2+z^2\ge78\)
2) Cho các số thực x, y, z khác 0 thỏa mãn x + y + z = 3xyz, chứng minh rằng\(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
3) Với a, b, c là các số thực dương thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất của P = a3 + 64b3 + c3
Cho các số thực a,b,c thỏa \(a\ge5\); \(a+b\ge6\);\(a+b+c\ge7\)
Tìm Min \(A=a^2+b^2+c^2\)
Cho \(a,b,c\) thỏa mãn \(\left|a\right|,\left|b\right|,\left|c\right|< 1\) và \(ab+bc+ca=2\). Chứng minh :
\(P=\dfrac{a^2}{1-b^2}+\dfrac{b^2}{1-c^2}+\dfrac{c^2}{1-a^2}\ge6\).
cho các các số thực a b c thỏa mãn a^3-b^2-b=b^3-c^2-c=c^3-a^2-a=1/3.Chứng minh rằng a=b=c
Cho các số thực a,b,c khác 0 thỏa mãn ab+bc+ca=1 và a2b+c=b2c+a=c2a+b. Chứng minh rằng a=b=c
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng abc (1 + a^2)(1 + b^2)(1 + c^2) ≤ 8
cho các số thực a,b,c thỏa mãn a^3-b^2-b=b^3-c^2-c=c^3-a^2-a=1/3
Chứng minh rầng a=b=c
Cho a, b, c là các số thực dương thỏa mãn a2+b2+c2=3.
Chứng minh rằng: a/b + b/c + c/a >= 9/(a+b+c)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^2-b=b^2-c=c^2-a Chứng minh rằng (a+b+1)(b+c+1)(c+a+1)= -1