\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\dfrac{1}{\sqrt{1348}}.\sqrt{\left(a+b\right).1348}+\dfrac{1}{\sqrt{1348}}.\sqrt{\left(b+c\right).1348}+\dfrac{1}{\sqrt{1348}}.\sqrt{\left(c+a\right).1348}\)
\(\le\dfrac{1}{\sqrt{1348}}\left[\dfrac{\left(a+b\right)+1348}{2}+\dfrac{\left(b+c\right)+1348}{2}+\dfrac{\left(c+a\right)+1348}{2}\right]\)
\(=\dfrac{1}{\sqrt{1348}}.\left[\left(a+b+c\right)+2022\right]\)
\(=\dfrac{1}{\sqrt{1348}}.\left(2022+2022\right)\)
\(=\dfrac{4044}{\sqrt{1348}}=6\sqrt{337}\)
- Dấu "=" xảy ra khi \(a=b=c=674\)
- Vậy \(MaxA=6\sqrt{337}\)