tao biết làm bài này từ lớp 7 rồi, lớp 9 cũng hỏi mấy câu này
tao biết làm bài này từ lớp 7 rồi, lớp 9 cũng hỏi mấy câu này
cho a,b,c,d là các số dương thoã mãn \(\frac{a}{b}\)= \(\frac{c}{d}\).
Hãy trục căn thức ở mẫu của biểu thức: P = \(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\).
trục căn thức ở mẫu của các biểu thức sau
a) \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{2c}}\) trong đó a,b,c là các số dương thỏa mãn điều kiện c là trung bình nhân của 2 số là a,b
b) \(B=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)trong đó a,b,c,d là các số dương thỏa mãn điều kiện ab=cd và a+b khác c+d
Cho a, b, c, d > 0 và ad = bc. Trục căn thức \(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
1/ Cho mọi số nguyên dương .Chứng minh
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}<1\)
2/ Chứng minh bất dẳng thức sau với các số a, b, c dương.
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}\)
3/ Chứng minh
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\) (với a, b, c dương)
b) \(\frac{a^2}{a+b}-\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\) (với a, b, c dương)
Cho a,b,c,d và A,B,C,D là các số nguyên dương thỏa mãn \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\). Chứng minh \(\sqrt{a.A}+\sqrt{b.B}+\sqrt{c.C}+\sqrt{d.D}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Cho a,b,c là 3 số dương thỏa mãn: \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\)Tính giá trị của biểu thức M =\(\frac{\sqrt{a}-\sqrt{b}}{c+\sqrt{abc}}+\frac{\sqrt{b}-\sqrt{c}}{a+\sqrt{abc}}+\frac{\sqrt{c}-\sqrt{a}}{b+\sqrt{abc}}\)
ho các số dương a,b,c .Chứng minh rằng bất đẳng thức
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+d}}+\sqrt{\frac{c}{d+a}}+\sqrt{\frac{d}{a+b}}\)\(\ge2\)
#Chuyên mục bất đẳng thức khởi động bước vào năm học mới#
Bài toán 41: Cho a, b, c là các số thực dương thỏa mãn\(a+b-c\ge0;b+c-a\ge0;c+a-b\ge0\)và \(\left(a+b+c\right)^2=4\left(ab+bc+ca-1\right)\)
Tìm GTNN của biểu thức \(S=\sqrt{\frac{a+b}{c}-1}+\sqrt{\frac{b+c}{a}-1}+\sqrt{\frac{c+a}{b}-1}+\frac{2\sqrt{2}}{\sqrt{a^2+b^2+c^2-2}}\)
Bài toán 46: Cho 3 số thực dương a, b, c thỏa mãn\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}\)
Tìm GTNN của biểu thức \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}\)
Tạp chí THTT:
Cho các số thực dương a,b,c,d thỏa mãn a+b=c+d=2019 và ab\(\ge\)cd.Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{a+2+3\sqrt[3]{b}}{\sqrt[3]{c}+\sqrt[3]{d}}\)