Với các số dương a,b,c,d sao cho\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}=1.\)CM: abcd nhỏ hơn hoặc bằng 1/81
Cho a,b,c,d>0 bt \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\)<=1 CMR\(abcd\le\frac{1}{81}\)
cho a;b;c;d là các số thực dương thỏa mãn \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\le1\)CMR:\(abcd\le\frac{1}{81}\)
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho các số dương a, b, c, d và a/1+a + b/1+b + c/1+c + d/1+d <= 1. Chứng minh rằng a*b*c*d <= 1/81
chứng minh rằng với mọi a,b,c,d mà abcd=1 và \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)thì ab=cd=1 hoặc bd=ac=1
Cho a,b,c,d>0 thỏa
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3\)\
CMR: \(abcd\le\frac{1}{81}\)
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
Biết \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\).Chứng minh rằng:\(abcd\le\frac{1}{81}\)