MẤY BẠN GIẢI NHANH GIÚP MÌNH MẤY BÀI TOÁN KHÓ NÀY NHA, MAI MÌNH ĐẾN HẠNG NỘP RỒI:
a) Cho a,b,c >0 thỏa 1/a+1/c=2/b. Chứng ming (a+b)/(2a-b)+ (b+c)/(2c-b) >=4
b) cho a,b >0 và a+b<=1. Chứng minh 1/(a^2+ab) + 1/(b^2+ab) >=4
c) cho a,b,c>0. Chứng minh (a+b+c)(a^2+b^2+c^2)>=9abc
Cho a,b,c >0, chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh rằng : a/(-a+2b+2c) + b/(-b+2a+2c) + c/(-c+2a+2b) >=1
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3\)
Cho a,b,c dương ( lớn hơn 0) và \(a+b+c=3\)
chứng minh: \(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2a}+\dfrac{c}{1+a^2b}\ge\dfrac{3}{2}\)
giúp mik với, mik cảm ơn
cho a+b+c=2;chứng minh rằng (2-c)(b-c)/2a+bc+(2-a)(c-a)/2b+ca+(2-b)(a-b)/2c+ab lớn hơn hoặc bằng 0
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Cho a,b,c,d € R. Chứng minh
a) a+b <= √2(a^2+b^2)
b) a/bc + b/ca + c/ab >= 2(1/a + 1/b - 1/c) với a,b,c>0
c) ab(a+b-2c) + bc(b+c-2a) + ac(a+c-2b) >= 0 với a,b,c>0