Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (1+2a+1+2b)(1+1)=4(a+b+1)$
Tiếp tục áp dụng Bunhiacopxky:
$(a+b)^2\leq (a^2+b^2)(1+1)=2\Rightarrow a+b\leq \sqrt{2}$
$\Rightarrow P^2\leq 4(\sqrt{2}+1)$
$\Rightarrow P\leq 2\sqrt{\sqrt{2}+1}$
Vậy $P_{\max}=2\sqrt{\sqrt{2}+1}$. Giá trị này đạt tại $a=b=\frac{1}{\sqrt{2}}$