Từ đẳng thức đã cho suy nghĩ a 3 + b 3 + c 3 – 3abc = 0
B 3 + c 3 = ( b + c ) ( b 2 + c 2 – b c ) = ( b + c ) [ ( b + c ) 2 – 3 b c ] 4 = ( b + c ) 3 – 3 b c ( b + c )
= > a 3 + b 3 + c 3 – 3 a b c = a 3 + ( b 3 + c 3 ) – 3 a b c ⇔ a 3 + b 3 + c 3 – 3 a b c = a 3 + ( b 3 + c 3 ) – 3 b c ( b + c ) – 3 a b c ⇔ a 3 + b 3 + c 3 – 3 a b c = ( a + b + c ) ( a 2 – a ( b + c ) + ( b + c ) 2 ) – [ 3 b c ( b + c ) + 3 a b c ] ⇔ a 3 + b 3 + c 3 – 3 a b c = ( a + b + c ) ( a 2 – a ( b + c ) + ( b + c ) 2 ) – 3 b c ) ⇔ a 3 + b 3 + c 3 – 3 a b c = ( a + b + c ) ( a 2 – a b – a c + b 2 + 2 b c + c 2 – 3 b c ) ⇔ a 3 + b 3 + c 3 – 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 – a b – a c – b c )
Do đó nếu a 3 + b 3 + c 3 – 3abc = 0 thì a + b + c = 0 hoặc a 2 + b 2 + c 2 – ab – ac – bc = 0
Mà a 2 + b 2 + c 2 – ab – ac – bc = .[ ( a – b ) 2 + ( a – c ) 2 + ( b – c ) 2 ]
Suy ra a = b = c
Đáp án cần chọn là: B