Chứng minh rằng với các số thực dương \(a_1,a_2,a_3,...a_n\)thì:
\(\sqrt[n]{\frac{a_1^2+a_2^2+a_3^2+...+a_n^2}{n}}\)\(\ge\frac{a_1+a_2+a_3+...+a_n}{n}\)\(\ge\sqrt[n]{a_1a_2a_3...a_n}\)\(\ge\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\)
cho n số thực dương \(a_{_{ }1},a_2,...,a_n\)có tổng bằng 1. Chứng minh rằng:
a) \(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
b) \(\left(a_1+\frac{1}{a_1}\right)^2+\left(a_2+\frac{1}{a_2}\right)^2+...+\left(a_n+\frac{1}{a_n}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
Cho \(a_1\le a_2\le....\le a_n\) thỏa mãn \(\hept{\begin{cases}a_1+a_2+a_3+...+a_n=0\\\left|a_1\right|+\left|a_2\right|+\left|a_3\right|+...+\left|a_n\right|=1\end{cases}}\)
CMR: \(a_n-a_1\ge\frac{2}{n}\)
Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
Cho các số:\(a_1,a_2,a_3,...,a_{2009}\) được xác định theo công thức sau:
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với n=1,2,3,...,2008
Chứng minh rằng :\(a_1+a_2+a_3+...+a_{2009< \frac{2008}{2010}}\)
Cho a1 , a2 , ... , an > 0 . Với mọi m,n ∈ N* , n ≥ 2 , chứng minh bất đẳng thức :
\(a_1^m+a_2^m+...a_n^m\ge\left(n-1\right)a_1a_2...a_n+\frac{a_1^{m-1}+a_2^{m-1}+...+a_n^{m-1}}{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}}\)
cho \(1\le n\in N;a,b\in R;i=1,2,3,...,n\)chứng minh rằng
\(\left(\frac{a_1+a_2+a_3+...+a_n}{n}\right)^2\le\frac{a_1^2+a_2^2+...+a_n^2}{n}\)
Cho n số dương a1,a2 ,...,an. Chứng minh rằng :
\(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2\)
Cho n số thực \(a_1;a_2;...;a_n\) thoả mãn \(a_1^2+a_2^2+..+a_n^2=3\).
Chứng minh rằng: \(\left|\frac{a_1}{2}+\frac{a_2}{3}+..+\frac{a_n}{n+1}\right|\le\sqrt{2}\)