A = ( 1+3+3^2) + (3^3 +3^4 +3^5) + ....+(3^1998 +3^1999 +3^2000)
= 1 * (1+3 +3^2) +3^3 *(1 +3+3^2) +...+3^1998 *(1+3+3^2)
=(1+3^3 +...+3^1998) * (1+3+3^2)
=(1+3^3 +...+3^1998) *13
=>A chia hết cho 13 vì 13chia hết cho 13
đúng rồi nên k nha!
A = ( 1+3+3^2) + (3^3 +3^4 +3^5) + ....+(3^1998 +3^1999 +3^2000)
= 1 * (1+3 +3^2) +3^3 *(1 +3+3^2) +...+3^1998 *(1+3+3^2)
=(1+3^3 +...+3^1998) * (1+3+3^2)
=(1+3^3 +...+3^1998) *13
=>A chia hết cho 13 vì 13chia hết cho 13
đúng rồi nên k nha!
Cho A = 1 + 3 + 32 + 33 + … + 31999 + 32000. A chia hết cho:
A. 13 B. 32000 C.3 D. 2000
CHỨNG MINH RẰNG
A= 88+220 chia hết cho 17
B= 2+ 22+23+24+...+260 chia hết cho 3; cho 7; cho 15
C= 1+3+32+33+...+31991 chia hết cho 13; cho 41
D=3+32+33+34+...+32010 chia hết cho 4;cho 13
Chứng minh A = 1 + 3 + 32 + 33 + 34 + 35 + ... + 3101
Chứng minh rằng A chia hết cho 13
help meeeeeeee
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
Bài 6. Cho B = 3 + 32 +33 + ...+ 3120 . Chứng minh rằng: a) B chia hết cho 3; b) B chia hết cho 4; c) B chia hết cho 13.
Cho B 3 32 33 ... 3120 . Chứng minh rằng:
a) B chia hết cho 3
b) B chia hết cho 4
c) B chia hết cho 13
Chứng minh rằng I = 1 + 3 + 3 2 + 3 3 + . . . + 3 1991 chia hết cho 13
Cho A = 1 + 3 + 32 + 33 +…+ 3101. Chứng tỏ rằng A chia hết cho 13
1.Chứng minh rằng tích của 5 số tự nhiên liên tiếp chia hết cho 5. 2.Tìm x,y để: a) A = x81y chia hết cho 2,3,5,9 b) B = 32x17 chia hết cho 45 c) C = 29x13y chia hết cho 45 d) D = 34x5y chia hết cho 36 3. Cho P = 32 + 33 + 34 + . . . + 3121 Chúng minh rằng: a) P chia hết cho 4 b) P chia hết cho 6 c) P chia hết cho 13
Cho S = 1+3+32+33+......+398. Chứng minh rằng S chia hết cho 13.
Giúp em với ạ, em cảm ơn