\(A=1+3+3^2+3^3+...+3^{100}\)
\(3A=\left(1+3+3^2+3^3+...+3^{100}\right).3\)
\(3A=3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A= 1+3+3^2+3^3+...+3^{100} \)
\(3A=3+3^2+...+3^{101}\)
\(3a-a=(3+3^2+...+3^{101}-(1+3+3^2+...+2^{100})\)
\(2A=3^{101}-1\)
\({A=2^{101}-1}/{2}\)
\(=> B-A = 3^{100}/2 - 3^{101}-1/2\)