Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lòi văn tói

cho a =1/2*3/4*5/6*...*79/80. chứng minh a <1/9

soyeon_Tiểu bàng giải
24 tháng 7 2016 lúc 12:57

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)

\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)

\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)

=> \(A< \frac{1}{9}\left(đpcm\right)\)

Lâm Nhi Nhi
28 tháng 4 2019 lúc 20:46

Ta có:

\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)

\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)

...

\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)\(\frac{80}{81}\)

Từ trên, ta có:

A= \(\frac{1}{2}\)\(\frac{3}{4}\)\(\frac{5}{6}\)...\(\frac{79}{80}\)\(\frac{2}{3}\)\(\frac{4}{5}\)\(\frac{6}{7}\)...\(\frac{80}{81}\)

A<  \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\)\(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)

A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)

A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)

A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)

 <  \(\frac{1}{9}\)  (đpcm)

Vậy A< \(\frac{1}{9}\)

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)

\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}....\frac{79}{80}.\frac{80}{81}\)

\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)

\(\Rightarrow A< \frac{1}{9}\left(\text{đ}pcm\right)\)


Các câu hỏi tương tự
Bùi Đức Anh
Xem chi tiết
Nguyễn thị Trang Nhung
Xem chi tiết
TH
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Thị Ánh Tuyết _29...
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Hoàng Kỳ Anh
Xem chi tiết
phan van co 4
Xem chi tiết