Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lệ Băng

Cho A = 1/2^2 + 1/3^2 + 1/4^2 + ......... + 1/2014^2. Chứng tỏ A<3/4 

Lưu ý: Dấu ^ là dấu mũ nhaaa:3 Các cậu giải giúp tớ vớiiii:4

Lê Tài Bảo Châu
14 tháng 5 2019 lúc 21:49

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

            .....................

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

Đặt \(B=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

           \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

             \(=\frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Nguyễn Xuân Anh
14 tháng 5 2019 lúc 21:52

\(\text{Ta có: }n^2>n^2-1=\left(n-1\right)\left(n+1\right)\)

\(\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}\)

Vậy .............


Các câu hỏi tương tự
Nguyễn Thị Lan Chi
Xem chi tiết
Mikaho love
Xem chi tiết
Nguyễn Thị Tường Vi
Xem chi tiết
Đặng Quốc Khánh
Xem chi tiết
Nguyễn Thị Bảo Ngọc
Xem chi tiết
thịnh
Xem chi tiết
tràn luxi
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Hồ Nguyễn Hạ Nghi
Xem chi tiết